
Microservices as an Evolutionary Architecture: Lessons learned

Claudio Eduardo de Oliveira & Luram Archanjo

Who am I?
● Software Engineer @Sensedia

● MBA in Java projects

● Java and Microservice enthusiast

Who am I?
● Lead Solutions Architect @Sensedia

● Book Author

● Spring, Java and Cloud Native enthusiast

Agenda

● Use Case

● Microservices & Evolutionary Architecture

● Domain Driven Design (DDD)

● Communication Patterns

● Concurrency Patterns

● Observability

● Questions

Use case

Use case

Response time

Microservices as an Evolutionary Architecture: Lessons learned

Throughput

In the beginning

As is

● Single communication pattern

● Java & Spring everywhere

● Synchronous process everywhere

● Traffic east-west in the API Gateway

● 50 - 60% of our commits during the sprint were in the same repository

● Service with different workload requirements (Crypto and Business)

We were in the wrong way to
adopt microservices architecture!

Let's recap what is the
microservices architecture!

Moving to Microservices

Feature A

Feature B

Feature C

Monolith

Microservice Microservice

Microservices

Microservice

Technological Heterogeneity

Microservice Microservice Microservice

DB DB DB

Evolutionary Architecture

Evolutionary Architecture

An evolutionary architecture supports guided, incremental change as a first
principle across multiple dimensions.

Source: https://www.thoughtworks.com/books/building-evolutionary-architectures

https://www.thoughtworks.com/books/building-evolutionary-architectures

Before make a architectural
decision, we need to be confident!

How?

Regression Tests

Regression Tests

 REGRESSION TEST SUITE

 REGRESSION SCRIPTS

 AUTOMATED REGRESSION TESTING

NEW FEATURES

SCRIPT UPDATES

We have tests coverage and now?

Domain Driven Design (DDD)

Domain Driven Design (DDD)

Domain-driven design (DDD) is an approach to developing software for complex
needs by deeply connecting the implementation to an evolving model of the core
business concepts.

● Place the project’s primary focus on the core domain and domain logic

● Base complex designs on a model

● Initiate a creative collaboration between technical and domain experts to
iteratively cut ever closer to the conceptual heart of the problem.

Source: https://dddcommunity.org/learning-ddd/what_is_ddd/

https://dddcommunity.org/learning-ddd/what_is_ddd/

We are trying to figure out the
technique to divide services,

what part of DDD can help us?

Domain Driven Design - Bounded Context

Bounded Context is a central pattern in Domain-Driven Design. It is the focus of
DDD's strategic design section which is all about dealing with large models and
teams. DDD deals with large models by dividing them into different Bounded
Contexts and being explicit about their interrelationships.

Source: https://martinfowler.com/bliki/BoundedContext.html

https://martinfowler.com/bliki/BoundedContext.html

We separated the responsibilities
and now?

Communication Patterns

REST API

REST API, EVERYWHERE

Advanced Message Queuing
Protocol (AMQP)

Advanced Message Queuing Protocol (AMQP)

● Introducing Message-Driven Programming with Low Level Events

● Fire & Forget principle

● Durable Messages (avoid Circuit Breakers & Retries)

● Better Scale strategies & Application Decoupling

● Fits well for 3rd partners integrations

Advanced Message Queuing Protocol (AMQP) - Thoughts

● Keep track of events otherwise you will have problems

● We used retries to put message in the queue

● Take care of the data into the message (security concerns)

HTTP / gRPC

● HTTP Connections are stateful (avoid open & close)

● Static Typed & Well Defined Contracts

● Reduce serialization complexity & improve efficiency

● Easy Peasy to integrate (there is code generation based in .proto)

● Traffic is binary reduce bandwidth usage

HTTP / gRPC - Thoughts

● Load Balancing and Client Load Balancing

● We used in the high throughput solution

● By definition in general we use for internal communication (a.k.a East-West)

● Not for humans, designed by machine communications

HTTP / REST

● Well documented Style

● “De-Facto” Pattern for Microservices Architecture

● “Toolability”

● Security

HTTP / REST - Thoughts

● Well documented Style

● For Humans, fits very well for External APIs (API Strategy)

● API Management provided by Sensedia offers interesting features to
troubleshoot

We have tests, responsibilities
and communication!

It is possible to improve more?

Reactor Pattern & Reactive
Programming

Reactor Pattern & Reactive Programming

Reactive Programming

Reactive programming is an asynchronous programming paradigm concerned
with data streams and the propagation of change.

● Easier to read, maintain and evolute

● Low memory footprint

● Scalability

Source: https://en.wikipedia.org/wiki/Reactive_programming

https://en.wikipedia.org/wiki/Reactive_programming

Reactive Programming

Source: https://craftsmen.nl/memory-usage-6-popular-rest-server-frameworks-compared/

https://craftsmen.nl/memory-usage-6-popular-rest-server-frameworks-compared/

Reactive Programming - Thoughts

● Never blocks the event loop

● Callback hell

● Don’t look memory, look the event loop size

Language

Language

Kotlin is fully compatible with all Java-based frameworks, which lets you stay on
your familiar technology stack while reaping the benefits of a more modern
language.

● 40% less code = Easier to read, maintain and evolute

● Fail fast principle = Time to Market

Source: https://kotlinlang.org/docs/reference/server-overview.html

https://kotlinlang.org/docs/reference/server-overview.html

Language - Thoughts

● Expertise in Java Frameworks

● Learning curve, sprint in progress

sensedia.com

Monitoring & Observability

Monitoring is the practice of collecting signals,
telemetry, traces, etc and aggregating them,

and matching them against some pre-defined
criteria of system states we should carefully
watch. When we find that one of our signals
has crossed a threshold and may be heading
toward a known bad state, we take action to

remedy the system

- Christian Posta

Monitoring is a subset of
Observability

Observability on the other hand supposes up
front that our systems are highly unpredictable
and we cannot know all of the possible failure

modes up front

We need to collect much more data, even
high-cardinality data like userIDs, requestIDs,
source IPs, etc where the entire set could be

exponentially large

sensedia.com

Everything have been possible,
because we formed a great

Team Mindset

Team Mindset

In a fixed mindset, people believe their basic qualities, like their intelligence or
talent, are simply fixed traits. Contrarily, in a growth mindset, people believe that
their most basic abilities can be developed through dedication and hard work.

Source: https://mindsetonline.com/whatisit/about/

https://mindsetonline.com/whatisit/about/

Team Mindset - Thoughts

● Hands-on

● Tech talks

● Lightning talks

● Events
○ The Developer’s Conference (TDC)
○ APIX
○ Meetups

Before & After

Before

After

Infrastructure Observability Communication

Frameworks

After

Languages Databases

Summary

2º Place

1º Place

3º Place
Last responsible
moment

● Decisions

● Experience

● Maturity

Team mindset

● Commitment

● Opportunity to
grow and learn

● Feedbacks

Technologies

● Understand the
technologies
concepts

● Business value

Thanks a million!
Questions?

/larchanjo

/luram-archanjo

/claudioed

/claudioed

